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Abstract 
 
Estimates of rooftop PV capacity, by region and postcode, is publicly available in Australia. However, data on 
individual households’ rooftop photovoltaic (PV) capacity is not publicly available. This is valuable in price 
comparison and research, for example analysing the impact of rooftop solar in wholesale markets and on networks. 
We develop a model to estimate an individual household’s rooftop PV capacity, using data on the household’s 
estimated annual rooftop PV exports to the grid and its volume of annual grid electricity purchases. The model 
relies on simulated data of hypothetical rooftop PV systems, which are then used to estimate relationships between 
the variables. The model was found to reliably predict PV capacity in a test of 124 households where PV capacity 
was known. The model is useful in applications that require estimation of the relationship between annual 
measures of household grid electricity purchases, rooftop PV exports and rooftop PV capacity. This includes 
research into the impact of rooftop PV on wholesale market and network charges, and electricity price comparison. 
The model development and testing approach used here can be replicated in other locations but data on rooftop 
PV capacity for households in those locations will be needed for model verification. 
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1. Introduction and background 
 
Around one in four households in Australia have installed rooftop photovoltaic (PV) capacity and market 
penetration is growing at the rate of about 1,500 MW per year. Rooftop PV produces electricity when irradiated. 
This electricity can partially or fully self-supply the needs of the home that houses the PV panels. In most cases 
household PV systems produce more than can be consumed on the premises and the surplus is exported to the 
grid. Leaving aside local conditions, the extent of self-supply and grid export depends on the size of the PV system 
and the household’s demand when the PV system is producing electricity. Understanding the amount of electricity 
produced, exported and consumed on the premises in individual households is valuable in the understanding of 
many economic and policy questions. For example, it is not possible to estimate the merit order effect of rooftop 
PV production without knowledge of gross rooftop PV production. Or it is not possible to estimate the effect of 
rooftop PV on electricity networks without knowing the amount of PV that is exported to the grid. Similarly 
knowing the amount of rooftop PV that is consumed on the premises is valuable in understanding total electricity 
consumption in different households and for a variety of economic analyses related to this. 
 
In order to estimate rooftop PV production for individual households, it is necessary to know the capacity of their 
PV system. Estimates of aggregate rooftop PV capacity, by administrative region and postcode, is publicly 
available in Australia (see for example www.aemo.com.au, or www.apvi.org.au). However, data on individual 
households’ rooftop photovoltaic (PV) capacity is not publicly available in Australia.  
 
This article describes a novel model developed for the purpose of estimating an individual household’s rooftop 
PV capacity, using data on the household’s estimated annual rooftop PV exports to the grid and its volume of 
annual grid electricity purchases. This model has been applied in electricity price comparisons (where knowledge 
of rooftop PV capacity was used to estimate annual rooftop PV exports), and in research on distributed energy 
(where knowledge on household rooftop PV exports and grid electricity consumption was used to estimated PV 
capacity and hence gross rooftop PV production and the amount of rooftop PV used on the premises). This article 
contributes to the literature by explaining the development and testing of an approach to PV capacity estimation 
in Victoria. Australia. This approach can be applied elsewhere and the analytical opportunities that this model 
enables will therefore be available to others.  
 
Section 2 presents the data we used and the methodology for the development, selection and testing of the model. 
Section 4 presents results of tests of the model’s ability to accurately predict PV capacity. Section 5 discusses the 
model and Section 6 draws attention to applications and extensions.  
 
2. Data and Methodology  
 
2.1 Data 
 
The development and testing of our model has drawn on data from three sources: the National Renewable Energy 
Laboratory’s (NREL) publicly available System Advisor Model, data from the electricity bills of 124 households 
in Victoria that have rooftop solar provided to us by customer group CHOICE, and data on half-hourly electricity 
consumption and rooftop solar exports of 300 households, mostly located in Melbourne, provided to us by 
electricity network service providers Powercor/Citipower, through metering data provider C4NET. A summary 
of these data are as follows: 
 

• NREL data: The National Renewable Energy Laboratory’s (NREL) System Advisor Model (SAM) was 
used to develop simulation data of hourly solar export for a year, given assumptions on hourly grid 
demand (including the portion self-supplied through rooftop PV) and PV system size. SAM Version 
2016.3.14, 64 Bit, Updated to revision 4 was used in this simulation. 

 
• CHOICE data: Data on grid purchase volumes and PV export to the grid is extracted from 124 

electricity bills covering a period of around 30–111 days per bill (median and average of 88 days) for 
households located mainly in or near Melbourne, Victoria). These bills were based on electricity 
consumption in the period mainly from March to June 2017. The bills were supplied to us by customer 
group CHOICE. CHOICE’s customers had provided those bills to CHOICE for the purpose of a price 
comparison service operated by CHOICE. These customers also provided data on the size (measured in 
the installed kW capacity) of their rooftop PV.  

 
• Half-hourly residential data: half-hourly PV export data spanning the 2018 calendar year for 304 

random homes from the Citipower and Powercor distribution networks in Victoria, Australia. These PV 
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export profiles provide a sample of the export quantity throughout the year and allow for annualisation 
of monthly export values in consumer bills.  

 
2.2 Methodology 
 
The methodology for the development and testing of the model is described in three steps: 
 

• Step 1. Establish data through simulation  
• Step 2. Develop models to fit the simulated data 
• Step 3. Model selection and testing  

 
Step 1: Establish data through simulation of a hypothetical household 
 
We established data on the relationship between PV capacity, gross PV production and grid imports by 
simulation of NREL’s SAM model. 
 
Relevant inputs to the simulation were as follows: 
 

1. PV Module: LG Electronics LG250S1K-A3 
2. Inverter: Fronius Primo 5.0-1 
3. Twenty-year irradiance data for Melbourne based on SAM’s inbuilt solar resource library. 
4. SAM’s inbuilt hourly load profile 
5. Annual Consumption, 𝑋 ∗ 1.243, [MWh] where X ranges in value in integers from 1 to 9  
6. PV capacity, 𝑌, [kW] where Y ranges in value in integers from 1 to 8.  

 
Repeated SAM simulation established a matrix 𝑍!,#,$ for hours k = 1 to 8760 in the year and the 72 combinations 
of Annual	Consumption	(i)	and	PV	Capacity	(j). From these data a three dimensional matrix [𝑋!%&' , 𝑌#%&( , 𝑍!,#] is 
established, 
 
where: 𝑋!%&'  : Total Annual Consumption = 𝑖 *1.243MWh 
 𝑌#%&(  : PV capacity = 𝑗*1kW  
 𝑍!,# : Annual PV exports =  B 𝑍!,#,$

()*+
,-./($)%& 	 

 
Step 2: Develop models to fit the simulated data 
 
We developed three models to estimate the relationship between PV capacity (the dependent variable) and the 
independent variables: grid demand (“D”) and PV exports (“PV_export”) using the SAM simulated data: 
 

• Ordinary Least Squares regression: The OLS functional form in our case is: 
 

𝑃𝑉2E = 	𝛼 + 𝛽3 . 𝐷! + 𝛽4𝑃𝑉_𝑒𝑥𝑝𝑜𝑟𝑡! + 𝜀! 
 

• Multivariate Adaptive Regression Spline1: MARS builds models of the form 𝑓(𝑥) = 𝛼 +
B 𝑐! . 𝐵!(𝑥)

$
!%& . The model is a weighted sum of basis functions. Each	𝑐! is a constant coefficient. The 

MARS model is implemented in R.  The MARS functional form for our case is:  

𝑃𝑉!(𝐷, 𝑃𝑉_𝑒𝑥𝑝𝑜𝑟𝑡) =V(𝑐! . 𝐷!(𝑥) +	𝑒! . 𝑃𝑉_𝑒𝑥𝑝𝑜𝑟𝑡	!(𝑥))
$

!%&

 

 

 

 
1 See https://support.bccvl.org.au/support/solutions/articles/6000118097-multivariate-
adaptive-regression-splines  
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• Thin Plate Splines: TPS are a type of smoothing spline used for the visualization of complex relationships 
between continuous predictors and response variables. Thin plate splines are fitted using a generalized 
additive model (GAM): g(E(Y)) = β0 + ƒ(X)+ λ where β0 is a constant, ƒ(X) denotes a flexible function 
of X (or the sum of these functions for more than one X), and λ is the error term. The error term provides 
a “built-in” smoothing function based on a penalized least squares method. Increasing λ will increase the 
smoothness of the spline. GAMs do not require any a priori knowledge of the functional form of the data 
or the relationship of interest. The TPS solution minimises the residual sum of squares subject to a 
constraint that the function have a certain level of smoothness quantified by the integral of squared m-th 
order derivatives. The TPS model is implemented in R.2 
 

The OLS, MARS and TPS models estimated PV capacity using the data on estimated annual grid purchases and 
PV exports obtained by annualising the typically (median bill) 883 day data in each bills. In this annualisation, the 
average daily grid purchases from the bill were assumed to be consistent over the year. Export to the grid of 
surplus rooftop PV production was annualised by multiplying the daily average grid export in each by 365 and 
then multiplied by a factor, the Quarterly Export Annualization Factor (QEAF), in order to take account of the 
seasonal variation in PV grid exports. The QEAF factor was derived by taking the average of the monthly EAF 
for the three months from April to June. The monthly EAF is calculated as the inverse of the average monthly PV 
exports, measured in kW. This was calculated using the Smartmeter half-hourly PV export data for 304 households 
in the Powercor and Citipower distribution supply areas by dividing the monthly average by annual average export 
values; Figure 1 shows the monthly annualisation factors. 
 
Figure 1. Monthly annualisation factors in Powercor and Citipower networks 

 
 
Step 3: Model selection criteria and model tests 
 
The estimated PV capacity from the three models for each household in the CHOICE dataset, was then compared 
to the known PV capacity for each household, by regressing the known PV capacity against the estimate from 
each of the models. PV capacity is a discrete measure to one decimal place. Therefore, we assess the actual against 
estimated to one decimal place. We describe the methodological approaches we employ to evaluate these models 
below. 
 
Goodness of fit 
The goodness of fit of each model is assessed by comparing the value of the adjusted 𝑅X5.  
 
Magnitude of error 
The Mean Square Error (MSE) and Root Mean Square Error (RMSE) measures the magnitude of error of the 
estimated against the actual.  
 
The MSE of the model forecasts is calculated as follows: 
 

 
2 See http://search.r-project.org/library/fields/html/Tps.html 
3 The duration of the bills ranged from 30 days to 111 days with the median (and average) billing period of 88 
days.  
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𝑀𝑆𝐸 =
∑ (𝑦2̂ − 𝑦!)56
!%&

𝑛 	 
 

[1] 

The RMSE of the model forecasts is calculated as follows: 
 

𝑅𝑀𝑆𝐸 =	a
∑ (𝑦2̂ − 𝑦!)56
!%&

𝑛  

[2] 

where: n is the sample size, 
 y is the actual PV capacity, 
 𝑦b is the estimated PV capacity, and 

i is the ith observation. 
 
A formal test for the statistical difference in the RMSE of each model is undertaken. This is the AGS test suggested 
by Ashley et al. (1980). The test requires the estimation of the linear regression: 
 

𝐷! = 𝑎 + 𝑏(𝑀7 −𝑀e) + 𝑢! 

[3] 

where 𝐷! = 𝑤&,! −𝑤5,! , 𝑀! = 𝑤&,! +𝑤5,!, is the mean of M, 𝑤&,! is the forecasting error of the model with the 
numerically higher RMSE, 𝑤5,! is the forecasting error of the model with the numerically lower RMSE. If the 
sample mean of the errors is negative, the observations of the series are multiplied by –1 prior to running the 
regression.  
 
The estimates of the intercept term, a, and the slope, b, from equation [3] are required to test the statistical 
difference between the RMSEs of two different models. The null hypothesis that the two RMSEs are equal is 
𝐻+: 𝑎 = 𝑏 = 0. If a and b are both positive, then a Wald test of the joint hypothesis 𝐻+: 𝑎 = 𝑏 = 0 is appropriate. 
The test statistic follows a chi-squared distribution, with two degrees of freedom. However, if one of the estimates 
is negative and statistically significant then the test is inconclusive. If one of the coefficients is negative and 
statistically insignificant the test remains valid. In this instance, the significance is determined by the upper-tail 
of the t-test on the positive coefficient estimate.  
 
Accurate predictions  
We also assess the capacity of each model to predict the actual PV size (to one decimal place), as well as the 
ability of the model to estimate the actual PV size with an allowance of +/- 10%. We calculate the probability of 
an accurate prediction as follows: 
 

𝐴𝑃 =
Σ𝑥!
𝑛  

[4] 

where:  

𝑥 = 	 m10	 	𝑖𝑓	 n
𝑦b = 𝑦
𝑦b ≠ 𝑦 

[5] 

 
The statistical significance of the difference in accurate predictions between the models is tested under the null 
hypothesis 𝐻+: 𝐴𝑃& = 𝐴𝑃5 against the alternative 𝐻&: 𝐴𝑃& ≠ 𝐴𝑃5 (where the competing models take values of 1 
and 2). The test statistic follows the t-distribution and is calculated as follows: 
 

𝑧 = 	
𝐴𝑃& − 𝐴𝑃5

q𝐴𝑃&(1 − 𝐴𝑃&)𝑛

 

[6] 
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Similarly, we calculate and test the probability of an accuracy prediction within +/- 10% allowance as follows: 
 

𝐴𝑃𝐴 =
Σ𝑣!
𝑛  

[7] 

where:  

𝑣 = 	 m10	 	𝑖𝑓	 n
𝑦 ∗ 0.9 ≤ 𝑦b ≤ 𝑦 ∗ 1.1

𝑦b = (−∞, 𝑦 ∗ 0.9) ∪	(𝑦 ∗ 1.1,∞) 

[8] 

 
Under estimation  
Depending on the purpose of the modelling and estimating exercise, under (or over) estimation of PV capacity 
could pose a greater risk. To address this in our model selection approach, we calculate and test the percentage of 
times each model underestimates the actual PV size (to one decimal place).  
 
Comparison to a perfect forecast 
A formal test for forecasting accuracy is performed by regressing the predicted values against the actuals for each 
of the three models. To do this we estimate the following regression: 
 

𝑦2̂ = 	𝛼 + 𝛽𝛾! + 𝜀! 

[9] 

By imposing the restrictions (α, β) = (0,1) on equation [9] the line of perfect forecast is obtained. Any violation 
of the coefficient restrictions defining the line of perfect forecast implies less than perfect forecasts, invariably 
involving magnitude and under or over estimation of PV size.  
 
Using this approach, Moosa and Burns (2014) propose to measure forecasting accuracy in terms of the extent of 
deviation from the coefficient restriction (𝛼, 𝛽) = (0,1). A Wald test of coefficient restrictions is conducted to 
determine if the violation is statistically significant, as implied by the 𝜒5 statistic. If all models violate this 
condition, relative forecasting superiority can be assessed by comparing the numerical value of the 𝜒5 statistic. 
That is, the bigger the value of the Wald test statistic, the greater the violation of the coefficient restriction and 
the worse the model is, with respect to its predictive power, as judged by magnitude and over/under estimation.4  
 
3. Results 
 
The results for the OLS regression are shown in . 
 
Table 1. 
 
Table 1. OLS regression results 

              Estimate Std. Error t-value Pr(>|t|) 
𝛼 -1.105e-01 1.020e-01 -1.084 0.282 
𝛽𝑑 2.764 1.752e-05 15.772 <2e-16 *** 
𝛽𝑒 7.772e-04 1.161e-05 66.933 <2e-16 *** 

Note: Adjusted R-squared:  0.9998, F-statistic: 7.261e+05 on 1 and 122 DF,  p-value: < 2.2e-16. 
 
The specification for the MARS model is shown in Equation 11. 
	
𝑃𝑉(𝐷, 𝑃𝑉_𝑒𝑥𝑝𝑜𝑟𝑡)

= 10.252 − 0.0003226 ∗ (6116.6 − 𝐷) − 0.0003979 ∗ �𝑃𝑉489-/7 − 1777.7� − 0.0011425
∗ �7829.6 − 𝑃𝑉489-/7� + 0.001047 ∗ (𝑃𝑉489-/7 − 7829.6) 

[11] 

 
4 A similar test for forecasting accuracy is suggested by Evans and Lyons (2005). However, this test has a lower 
threshold (coefficient restriction only applies to beta) and we therefore opt to use the more robust test as 
suggested by Moosa and Burns (Moosa & Burns, 2014). 
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Model selection 
 
The model selection criteria and test results are presented in Table 2. We conclude that OLS outperforms MARS 
and TPS and summarise the results as follows: 
 

• OLS produces the highest goodness of fit and, using this methodology, we can explain 94 per cent of the 
variation in PV capacity size across households. 

• OLS produces the smallest magnitude of forecasting error, followed by TPS and MARS. 
• OLS performs best at accurately estimating PV capacity to one decimal place (around one third of 

observations are accurately estimated). TPS and MARS perform equally poorly in terms of accurate 
estimation (around one in ten observations are estimated correctly to one decimal place). 

• OLS outperforms other models and accurately estimates PV capacity (+/10%) in 80% of observations. 
MARS and TPS perform equally well (at the 5 per cent level of significance) and accurately estimates 
PV capacity (+/-10%) in around two thirds of cases.  

• OLS underestimates PV capacity in around two thirds of observations. This is significantly higher than 
MARS and TPS (which perform the same and underestimate PV capacity in around two fifths of 
observations).  

• No model produces estimates that meet the conditions of a perfect forecast. Nonetheless, OLS violates 
the conditions of a perfect forecast the least (and the MARS model violates the conditions of a perfect 
forecast most).  

 
The superior performance of the OLS model to generate an accurate prediction of PV capacity is further 
illuminated in Figure 2. Figure 2 compares the predicted PV capacity for each model against a 45 degree line that 
represents a perfect forecast. Notwithstanding that no model can produce a series of perfect forecasts, the OLS 
model produces forecasts that most closely approximate actual PV capacity (i.e. the trend line is closest to the line 
of perfect fit represented by the 45 degree line). The MARS model estimates are farthest away from the 45 degree 
line, indicating this model produces the least accurate forecast.  

Figure 2. Comparison of model estimates to perfect forecast 
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Table 2 Model selection criteria and test results 

 Null hypothesis OLS MARS TPS 
𝑅X5  0.942 0.886 0.904 
MSE  0.60 1.19 1.02 
RMSE   0.77 1.09 1.01 
AGS test H0: RMSE of OLS and TPS are equal  642.65 

(0.000)   

 H0: RMSE of MARS and TPS are equal    3295.16 
(0.000) 

Accurate 
prediction  

 34% 10% 9% 

 H0: % times correctly estimated by OLS and MARS is 
equal  

 5.69 
(0.000) 

 

 H0: % times correctly estimated by MARS and TPS is 
equal  

  0.30 
(0.762) 

Accurate 
prediction +/-
10% 

 
80% 63% 70% 

 H0: % times correctly estimated +/-
10% OLS and TPS is equal 

  2.69 
(0.008) 

 H0: % times correctly estimated +/-
10% MARS and TPS is equal 

 1.77 (0.080)  

Under 
estimation 

 59% 44% 39% 

 H0: % times under-estimated by OLS and MARS is 
equal 

 3.47 
(0.001) 

 

 H0: % times under-estimated by MARS and TPS is 
equal 

  1.09 
(0.279) 

Comparison to 
perfect forecast 

 24.40 
(0.000) 

85.89 
(0.000) 

36.01 
(0.000) 

 𝑅X5 0.90 0.81 0.83 
Note: P-values are in parenthesis.  
 
 
4. Discussion, applications and further development  
 
The approach described in this paper has relied on the simulation of a hypothetical rooftop PV system to establish 
export and gross production data which is then used to develop a model of the relationship between PV system 
capacity, grid exports and grid purchases. The model was tested against actual households and found a high level 
of accuracy. This is surprising considering the many uncertainties in the development of the model. In particular: 
 

1. The underlying NREL model used to develop the data for the model itself requires assumptions on 
residential hourly load profiles (it assumes only one profile). It also uses historic data on irradiance and 
of course the specification of the PV system (panel efficiency in particular but also inverter 
characteristics). Variation in these can result in significantly different outcomes;  

2. The data for the 124 households used to test the model will, no doubt, reflects the many diverse factors 
(such as shading, azimuth, panel degradation, system efficiency, operating characteristics, actual 
irradiance) that affect actual rooftop PV export over the circa 88 days measurement period.  

3. Our Quarterly Adjustment Factor (1.42) in the annualisation of PV exports relies on averages for 
consumption and export.  

 
Nevertheless, the tests find that the preferred OLS model has been able to produce reliable estimates of the PV 
capacity of the households in the test.  
 
The model is useful in applications that require estimation of the relationship between annual measures of 
household grid electricity purchases, rooftop PV exports and rooftop PV capacity. Such applications could 
include: 
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• Retail electricity price comparison, if historic data on two of annual household grid purchases, rooftop 
PV exports and PV capacity are known. 

 
• Research – for example see (Mountain, Percy, & Burns, 2020) – to estimate rooftop PV capacity in 

individual households for studies of network impacts of rooftop PV and Merit Order Effect studies. 
The model would be useful in extension to other recent research for example by empirical 
measurement of actual outcomes contemplated, for example in (Bernadette, Auer, & Friedl, 2019; 
Lazzeroni, Moretti, & Stirano, 2020; Li, Zhou, & Zheng, 2018).  

 
In future development it would be valuable to extend the model to other parts of Australia and to other countries. 
In addition, the robustness of the model should be tested using a larger test sample and with PV export and grid 
purchase data covering different months of the year. This will require a large sample of consumers’ bills and data 
on their installed PV capacity. 
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